Akraino R5 includes MEC-based Stable Topology Prediction for Vehicular Networks, an Akraino approved blueprint that will support a variety of edge use cases in the domain of Internet of Vehicles (IoV). The main objective of this blueprint is to provide an API to expose the end-devices real-time data at the edge to enable the MEC applications to be proactive.

The current/first release for this blueprint includes the development of Kalman filter which predicts the vehicular trajectory having a variance of approximately 1.154 in the output. The logs are pushed into the nexus repository log.

Akraino Blueprint: MEC-based Stable Topology Prediction for Vehicular Networks

The objective is to provide end-device information or the information of its surroundings at the edge. As it is a known fact that the installed sensors have different processing capacity because...
of which the provisioning of continuous data isn’t possible. Focusing the problem, we intend to use the prediction and rectification techniques to enhance the process which provision information to MEC applications. This design and approach tends to solve the problem of latency and enables the MEC applications to be proactive.

- Prediction of vehicle locations
- Rectification of predicted locations
- Intent-based design

For more information: [MEC-based Stable Topology Prediction for Vehicular Networks]